Anthropogenic Aerosols
It has been pointed out that the model I described in my
earlier post (Climate and the Atlantic Multidecadal Oscillation) ignored
anthropogenic aerosols. Here I look at the effect of adding these into the
model.
Data
The data used were downloaded from http://data.giss.nasa.gov/modelforce/Fe.1880-2011.txt.
They were used in J. Hansen, et al. (2007) "Climate simulations for 1880-2003
with GISS model E", Clim Dyn, 29: 661-669 and J. Hansen, et al. (2011)
"Earth's energy imbalance and implications, Atmos Chem Phys, 11,
13421-13449.
Figure 1 shows the individual components.
The individual components are:
WMGHGs – Well mixed greenhouse gases
O3 - Ozone
StrH2O – Stratospheric H2O
ReflAer – Reflective Aerosols
AIE – Aerosol indirect effect
BC – Black carbon
SnowAlb – Snow albedo
StrAer – Stratospheric Aerosols (Volcanoes)
Solar – Solar irradiance
LandUse – Land Use.
O3 - Ozone
StrH2O – Stratospheric H2O
ReflAer – Reflective Aerosols
AIE – Aerosol indirect effect
BC – Black carbon
SnowAlb – Snow albedo
StrAer – Stratospheric Aerosols (Volcanoes)
Solar – Solar irradiance
LandUse – Land Use.
The fifth and final parameter was the AMO.
For temperature I used the HadCRUT3 global data set. I am aware
that this has been superseded by the version 4 but for consistency with the
earlier posting I am sticking to it.
Results
The accuracy of the two models was almost identical. This
can be seen on figure 3.
In terms of accuracy, the 4-parameter model (for the period
1880 to 2011) explained 89.3% of the variance and the 5-parameter model
explained 89.5%, confirming the similar accuracy of the two models.
Components
The comparison of observed and calculated temperatures does
not describe how the values were actually calculated. Figure 4 shows the effect
of each component on temperature.
In the above the use of ‘-5’ refers to 5 parameter model and
‘-4’ to the original 4 parameter model. The main differences between the models
are:
- The effect of GHGs is larger in the 5-parameter model, the difference being largely due to the effect of the anthropogenic factors.
- Solar effects are slightly higher in the 5-parameter models.
- The effect of volcanoes is minimal in both models.
- The influence of the AMO is virtually identical in both models.
The coefficients for the 5 independent variables were:
Parameter
|
Coefficient
°C/W.m2
|
Standard
error
|
AMO
|
0.504
|
0.0429
|
Volcanoes
|
0.011
|
0.0155
|
Solar
|
0.308
|
0.1474
|
Anthropogenic
|
0.157
|
0.1387
|
GHGs
|
0.285
|
0.0648
|
Constant
|
-0.358
|
0.0184
|
Since the all parameters, except for AMO, are expressed as
W/m2 and if the forcing sensitivity is close to the accepted value
of 3.2 W/m2/°C then each coefficient should have the value 0.3125
°C/W/m2 (that is 1/3.2). In this
case the parameters for GHGs and solar irradiance are close to that value. That
for volcanoes is much lower than expected. The parameter for combined
anthropogenic effects is also lower than expected but has wide error bands so
the ‘expected’ figure is within the 95% range.
Considering the critical period from 1976 to 2005, which had
the largest increase, the observed temperature increases were as given in the
table below.
|
Observed
|
5-parameter model
|
4-parameter model
|
||||
|
Total
|
Total
|
GHGs
|
AMO
|
Total
|
GHGs
|
AMO
|
1976-2005
|
0.737
|
0.641
|
0.380
|
0.338
|
0.654
|
0.324
|
.349
|
1880-2011
|
0.598
|
0.759
|
0.941
|
0.034
|
0.795
|
0.757
|
0.035
|
Considering the period of rapid temperature rise, the
original 4-parameter model suggested that 49% of the rise was due to GHGs, the equivalent
figure for the 5-parameter model is 59%.
These findings are
consistent with those reported in Zhou,
J., and K. Tung, 2012: Deducing Multi-decadal Anthropogenic Global Warming
Trends Using Multiple Regression Analysis. J. Atmos. Sci. doi:10.1175/JAS-D-12-0208.1,
in press. I will discuss this paper in another posting.
Conclusions
The conclusion remains as before. It is not clear whether
the AMO is the ‘heart’ of the system and is driving global temperature or
whether it is the ‘pulse’ and is an indicator another driver. What is clear
that global temperatures reflect changes in the AMO but the AOGCMs used by the IPCC
do not consider the AMO. In particular the AOGCMs simulated reasonably
accurately the large temperature increase from 1976 to 2005 but attribute all
the increase to GHGs. As a consequence, as pointed out in this and previous
postings, and some recent peer-reviewed papers, temperature increases in the
coming decades are likely to be lower than the IPCC projections.